Show simple item record

dc.contributor.authorWang, Yunzheen_US
dc.contributor.authorBaciu, Georgeen_US
dc.contributor.authorLi, Chenhuien_US
dc.contributor.editorJimmy Johansson and Filip Sadlo and Tobias Schrecken_US
dc.date.accessioned2018-06-02T17:54:16Z
dc.date.available2018-06-02T17:54:16Z
dc.date.issued2018
dc.identifier.isbn978-3-03868-060-4
dc.identifier.urihttp://dx.doi.org/10.2312/eurovisshort.20181073
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurovisshort20181073
dc.description.abstractUsing tremendous geo-textual data collected from social media applications, we facilitate the analysis of region functions. By extracting semantics from textual properties, we aim at classifying geographical locations in terms of their functional types. Hence, we train a classification model with the Support Vector Machine, and apply it to aggregated word embeddings to predict the function of spots. We highly cooperate with techniques in graph analysis. Firstly, regions are segmented based on a latent graph. Then, we propose an adaptive layout solution to deal with situations of multi-AOI queries. The generated layout and interactive metaphor provide convenience for observation and comparison. Experiments are conducted with the YFCC100M dataset to prove the effectiveness of our system.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectHuman
dc.subjectcentered computing
dc.subjectVisual analytics
dc.titleVisualizing Functional Regions by Analysis of Geo-textual Dataen_US
dc.description.seriesinformationEuroVis 2018 - Short Papers
dc.description.sectionheadersFlow, Volume, and Regions
dc.identifier.doi10.2312/eurovisshort.20181073
dc.identifier.pages25-29


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record