Show simple item record

dc.contributor.authorRauber, Paulo E.en_US
dc.contributor.authorFalcão, Alexandre X.en_US
dc.contributor.authorTelea, Alexandru C.en_US
dc.contributor.editorEnrico Bertini and Niklas Elmqvist and Thomas Wischgollen_US
dc.date.accessioned2016-06-09T09:42:26Z
dc.date.available2016-06-09T09:42:26Z
dc.date.issued2016en_US
dc.identifier.isbn978-3-03868-014-7en_US
dc.identifier.issn-en_US
dc.identifier.urihttp://dx.doi.org/10.2312/eurovisshort.20161164en_US
dc.identifier.urihttps://diglib.eg.org:443/handle/10
dc.description.abstractMany interesting processes can be represented as time-dependent datasets. We define a time-dependent dataset as a sequence of datasets captured at particular time steps. In such a sequence, each dataset is composed of observations (high-dimensional real vectors), and each observation has a corresponding observation across time steps. Dimensionality reduction provides a scalable alternative to create visualizations (projections) that enable insight into the structure of such datasets. However, applying dimensionality reduction independently for each dataset in a sequence may introduce unnecessary variability in the resulting sequence of projections, which makes tracking the evolution of the data significantly more challenging. We show that this issue affects t-SNE, a widely used dimensionality reduction technique. In this context, we propose dynamic t-SNE, an adaptation of t-SNE that introduces a controllable trade-off between temporal coherence and projection reliability. Our evaluation in two time-dependent datasets shows that dynamic t-SNE eliminates unnecessary temporal variability and encourages smooth changes between projections.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectHumanen_US
dc.subjectcentered computingen_US
dc.subjectInformation visualizationen_US
dc.subjectComputing methodologiesen_US
dc.subjectDimensionality reduction and manifold learningen_US
dc.titleVisualizing Time-Dependent Data Using Dynamic t-SNEen_US
dc.description.seriesinformationEuroVis 2016 - Short Papersen_US
dc.description.sectionheadersMultidimensional and Geospatial Visualizationen_US
dc.identifier.doi10.2312/eurovisshort.20161164en_US
dc.identifier.pages73-77en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record