Show simple item record

dc.contributor.authorAndrienko, Gennadyen_US
dc.contributor.authorAndrienko, Nataliaen_US
dc.contributor.authorHecker, Dirken_US
dc.contributor.editorAngelini, Marcoen_US
dc.contributor.editorEl-Assady, Mennatallahen_US
dc.date.accessioned2023-06-10T06:09:10Z
dc.date.available2023-06-10T06:09:10Z
dc.date.issued2023
dc.identifier.isbn978-3-03868-222-6
dc.identifier.issn2664-4487
dc.identifier.urihttps://doi.org/10.2312/eurova.20231091
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurova20231091
dc.description.abstractWe present a novel approach to analyze spatio-temporal movement patterns using topic modeling. Our approach represents trajectories as sequences of place visits and moves, applies topic modeling separately to each collection of sequences, and synthesizes results. This supports the identification of dominant topics for both place visits and moves, the exploration of spatial and temporal patterns of movement, enabling understanding of space use. The approach is applied to two real-world data sets of car movements in Milan and UK road traffic, demonstrating the ability to uncover meaningful patterns and insights.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Human-centered computing -> Visual Analytics
dc.subjectHuman centered computing
dc.subjectVisual Analytics
dc.titleExtracting Movement-based Topics for Analysis of Space Useen_US
dc.description.seriesinformationEuroVis Workshop on Visual Analytics (EuroVA)
dc.description.sectionheadersPatterns and Multidimensional Projections
dc.identifier.doi10.2312/eurova.20231091
dc.identifier.pages19-24
dc.identifier.pages6 pages


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License