Show simple item record

dc.contributor.authorMachado, Alisteren_US
dc.contributor.authorTelea, Alexandruen_US
dc.contributor.authorBehrisch, Michaelen_US
dc.contributor.editorAngelini, Marcoen_US
dc.contributor.editorEl-Assady, Mennatallahen_US
dc.date.accessioned2023-06-10T06:09:07Z
dc.date.available2023-06-10T06:09:07Z
dc.date.issued2023
dc.identifier.isbn978-3-03868-222-6
dc.identifier.issn2664-4487
dc.identifier.urihttps://doi.org/10.2312/eurova.20231088
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurova20231088
dc.description.abstractProjections, or dimensionality reduction methods, are techniques of choice for the visual exploration of high-dimensional data. Many such techniques exist, each one of them having a distinct visual signature - i.e., a recognizable way to arrange points in the resulting scatterplot. Such signatures are implicit consequences of algorithm design, such as whether the method focuses on local vs global data pattern preservation; optimization techniques; and hyperparameter settings. We present a novel projection technique - ShaRP - that provides users explicit control over the visual signature of the created scatterplot, which can cater better to interactive visualization scenarios. ShaRP scales well with dimensionality and dataset size, generically handles any quantitative dataset, and provides this extended functionality of controlling projection shapes at a small, user-controllable cost in terms of quality metrics.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCCS Concepts: Human-centered computing -> Visualization techniques; Mathematics of computing -> Dimensionality reduction
dc.subjectHuman centered computing
dc.subjectVisualization techniques
dc.subjectMathematics of computing
dc.subjectDimensionality reduction
dc.titleShaRP: Shape-Regularized Multidimensional Projectionsen_US
dc.description.seriesinformationEuroVis Workshop on Visual Analytics (EuroVA)
dc.description.sectionheadersBest Paper Award
dc.identifier.doi10.2312/eurova.20231088
dc.identifier.pages1-6
dc.identifier.pages6 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License