Show simple item record

dc.contributor.authorBeckmann, Raphaelen_US
dc.contributor.authorBlaga, Cristianen_US
dc.contributor.authorEl-Assady, Mennatallahen_US
dc.contributor.authorZeppelzauer, Matthiasen_US
dc.contributor.authorBernard, Jürgenen_US
dc.contributor.editorBernard, Jürgenen_US
dc.contributor.editorAngelini, Marcoen_US
dc.date.accessioned2022-06-02T14:59:49Z
dc.date.available2022-06-02T14:59:49Z
dc.date.issued2022
dc.identifier.isbn978-3-03868-183-0
dc.identifier.issn2664-4487
dc.identifier.urihttps://doi.org/10.2312/eurova.20221073
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurova20221073
dc.description.abstractWe present a visual analytics approach for the in-depth analysis and explanation of incremental machine learning processes that are based on data labeling. Our approach offers multiple perspectives to explain the process, i.e., data characteristics, label distribution, class characteristics, and classifier characteristics. Additionally, we introduce metrics from which we derive novel aggregated analytic views that enable the analysis of the process over time. We demonstrate the capabilities of our approach in a case study and thereby demonstrate how our approach improves the transparency of the iterative learning process.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleInteractive Visual Explanation of Incremental Data Labelingen_US
dc.description.seriesinformationEuroVis Workshop on Visual Analytics (EuroVA)
dc.description.sectionheadersHuman-Model Collaboration and Personalization
dc.identifier.doi10.2312/eurova.20221073
dc.identifier.pages13-17
dc.identifier.pages5 pages


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License