Show simple item record

dc.contributor.authorWu, Tsung Hengen_US
dc.contributor.authorZhao, Yeen_US
dc.contributor.authorAmiruzzaman, Mden_US
dc.contributor.editorTurkay, Cagatay and Vrotsou, Katerinaen_US
dc.date.accessioned2020-05-24T13:31:33Z
dc.date.available2020-05-24T13:31:33Z
dc.date.issued2020
dc.identifier.isbn978-3-03868-116-8
dc.identifier.issn2664-4487
dc.identifier.urihttps://doi.org/10.2312/eurova.20201091
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurova20201091
dc.description.abstractSpeech recognition technology has achieved impressive success recently with AI techniques of deep learning networks. Speechto- text tools are becoming prevalent in many social applications such as field surveys. However, the speech transcription results are far from perfection for direct use in these applications by domain scientists and practitioners, which prevents the users from fully leveraging the AI tools. In this paper, we show interactive visualization can play important roles in post-AI understanding, editing, and analysis of speech recognition results by presenting specified task characterization and case examples.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/]
dc.titleInteractive Visualization of AI-based Speech Recognition Textsen_US
dc.description.seriesinformationEuroVis Workshop on Visual Analytics (EuroVA)
dc.description.sectionheadersIntersecting Humans and AI
dc.identifier.doi10.2312/eurova.20201091
dc.identifier.pages79-83


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License