dc.contributor.author | Müller, Martin | en_US |
dc.contributor.author | Petzold, Markus | en_US |
dc.contributor.author | Wunderlich, Marcel | en_US |
dc.contributor.author | Baumgartl, Tom | en_US |
dc.contributor.author | Höhn, Markus | en_US |
dc.contributor.author | Eichel, Vanessa | en_US |
dc.contributor.author | Mutters, Nico T. | en_US |
dc.contributor.author | Scheithauer, Simone | en_US |
dc.contributor.author | Marschollek, Michael | en_US |
dc.contributor.author | Landesberger, Tatiana von | en_US |
dc.contributor.editor | Turkay, Cagatay and Vrotsou, Katerina | en_US |
dc.date.accessioned | 2020-05-24T13:31:32Z | |
dc.date.available | 2020-05-24T13:31:32Z | |
dc.date.issued | 2020 | |
dc.identifier.isbn | 978-3-03868-116-8 | |
dc.identifier.issn | 2664-4487 | |
dc.identifier.uri | https://doi.org/10.2312/eurova.20201090 | |
dc.identifier.uri | https://diglib.eg.org:443/handle/10.2312/eurova20201090 | |
dc.description.abstract | Bacteria and viruses are transmitted among patients in the hospital. Infection control experts develop strategies for infection control. Currently, this is done mostly manually, which is time-consuming and error-prone. Visual analysis approaches mainly focus disease spread on population level.We learn a RNN model for detection of potential infections, transmissions and infection factors. We present a novel interactive visual interface to explore the model results. Together with infection control experts, we apply our approach to real hospital data. The experts could identify factors for infections and derive infection control measures. | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.rights | Attribution 4.0 International License | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | ] |
dc.title | Visual Analysis for Hospital Infection Control using a RNN Model | en_US |
dc.description.seriesinformation | EuroVis Workshop on Visual Analytics (EuroVA) | |
dc.description.sectionheaders | Intersecting Humans and AI | |
dc.identifier.doi | 10.2312/eurova.20201090 | |
dc.identifier.pages | 73-77 | |