Show simple item record

dc.contributor.authorVrotsou, Katerinaen_US
dc.contributor.authorNordman, Aidaen_US
dc.contributor.editorTurkay, Cagatay and Vrotsou, Katerinaen_US
dc.date.accessioned2020-05-24T13:31:31Z
dc.date.available2020-05-24T13:31:31Z
dc.date.issued2020
dc.identifier.isbn978-3-03868-116-8
dc.identifier.issn2664-4487
dc.identifier.urihttps://doi.org/10.2312/eurova.20201087
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurova20201087
dc.description.abstractThis paper presents an interactive sequence mining approach for exploring long duration event-sequences and identifying interesting patterns within them. The approach extends previous work on exploratory sequence mining by using a sliding window to split the sequence prior to mining. Patterns are interactively grown and visualized through a tree representation, while a set of accompanying views allows for identified patterns to be explored in the context in which they occur. The approach is motivated and exemplified in the domain of air traffic control and, in particular, air traffic controller training.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/]
dc.subjectHuman centered computing
dc.subjectVisual analytics
dc.subjectInformation systems
dc.subjectData mining
dc.titleA Window-based Approach for Mining Long Duration Event-sequencesen_US
dc.description.seriesinformationEuroVis Workshop on Visual Analytics (EuroVA)
dc.description.sectionheadersVisual Analysis of High Dimensional and Temporal Data
dc.identifier.doi10.2312/eurova.20201087
dc.identifier.pages55-59


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License