Show simple item record

dc.contributor.authorBechtold, Fabriziaen_US
dc.contributor.authorAbraham, Hrvojeen_US
dc.contributor.authorSplechtna, Raineren_US
dc.contributor.authorMatkovic, Krešimiren_US
dc.contributor.editorLandesberger, Tatiana von and Turkay, Cagatayen_US
dc.date.accessioned2019-06-02T18:19:23Z
dc.date.available2019-06-02T18:19:23Z
dc.date.issued2019
dc.identifier.isbn978-3-03868-087-1
dc.identifier.urihttps://doi.org/10.2312/eurova.20191125
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurova20191125
dc.description.abstractThe Multiple T-Maze study is one of the standard methods used in ethology and behaviourism. In this paper we extend the current state of the art in analysis of Multiple T-Maze data for animal cohorts. We focus on pattern finding within animals' paths. We introduce the Sequence View which makes it possible to quickly spot patterns and to search for specific sub-paths in animal paths. Further, we also evaluate four different metrics for string comparison and two widely used embeddings to support interactive clustering. All views are fully integrated in a coordinated multiple views system and support active brushing. This research represents a step towards (semi)-automatic clustering for Multiple T-Maze cohort data, which will significantly improve the Multiple T-Maze data analysis.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleInteractive Pattern Analysis of Multiple T-Maze Dataen_US
dc.description.seriesinformationEuroVis Workshop on Visual Analytics (EuroVA)
dc.description.sectionheadersAnalyzing Movement and Events
dc.identifier.doi10.2312/eurova.20191125
dc.identifier.pages55-59


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record