dc.contributor.author | Angelini, Marco | en_US |
dc.contributor.author | May, Thorsten | en_US |
dc.contributor.author | Santucci, Giuseppe | en_US |
dc.contributor.author | Schulz, Hans-Jörg | en_US |
dc.contributor.editor | Landesberger, Tatiana von and Turkay, Cagatay | en_US |
dc.date.accessioned | 2019-06-02T18:19:21Z | |
dc.date.available | 2019-06-02T18:19:21Z | |
dc.date.issued | 2019 | |
dc.identifier.isbn | 978-3-03868-087-1 | |
dc.identifier.uri | https://doi.org/10.2312/eurova.20191120 | |
dc.identifier.uri | https://diglib.eg.org:443/handle/10.2312/eurova20191120 | |
dc.description.abstract | A key component in using Progressive Visual Analytics (PVA) is to be able to gauge the quality of intermediate analysis outcomes. This is necessary in order to decide whether a current partial outcome is already good enough to cut a long-running computation short and to proceed. To aid in this process, we propose ten fundamental quality indicators that can be computed and displayed to gain a better understanding of the progress of the progression and of the stability and certainty of an intermediate outcome. We further highlight the use of these fundamental indicators to derive other quality indicators, and we show how to apply the indicators in two use cases. | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.subject | Human | |
dc.subject | centered computing | |
dc.subject | Visual analytics | |
dc.subject | Computing methodologies | |
dc.subject | Progressive computation | |
dc.title | On Quality Indicators for Progressive Visual Analytics | en_US |
dc.description.seriesinformation | EuroVis Workshop on Visual Analytics (EuroVA) | |
dc.description.sectionheaders | Visual Analytics Methods | |
dc.identifier.doi | 10.2312/eurova.20191120 | |
dc.identifier.pages | 25-29 | |