Show simple item record

dc.contributor.authorSteinparz, Christian Alexanderen_US
dc.contributor.authorHinterreiter, Andreasen_US
dc.contributor.authorStitz, Holgeren_US
dc.contributor.authorStreit, Marcen_US
dc.contributor.editorLandesberger, Tatiana von and Turkay, Cagatayen_US
dc.date.accessioned2019-06-02T18:19:21Z
dc.date.available2019-06-02T18:19:21Z
dc.date.issued2019
dc.identifier.isbn978-3-03868-087-1
dc.identifier.urihttps://doi.org/10.2312/eurova.20191119
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurova20191119
dc.description.abstractRubik's Cube is among the world's most famous puzzle toys. Despite its relatively simple principle, it requires dedicated, carefully planned algorithms to be solved. In this paper, we present an approach to visualize how different solution algorithms navigate through the high-dimensional space of Rubik's Cube states. We use t-distributed stochastic neighbor embedding (t-SNE) to project feature vector representations of cube states to two dimensions. t-SNE preserves the similarity of cube states and leads to clusters of intermediate states and bundles of cube solution pathways in the projection. Our prototype implementation allows interactive exploration of differences between algorithms, showing detailed state information on demand.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleVisualization of Rubik's Cube Solution Algorithmsen_US
dc.description.seriesinformationEuroVis Workshop on Visual Analytics (EuroVA)
dc.description.sectionheadersVisual Analytics Methods
dc.identifier.doi10.2312/eurova.20191119
dc.identifier.pages19-23


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record