dc.contributor.author | Steinparz, Christian Alexander | en_US |
dc.contributor.author | Hinterreiter, Andreas | en_US |
dc.contributor.author | Stitz, Holger | en_US |
dc.contributor.author | Streit, Marc | en_US |
dc.contributor.editor | Landesberger, Tatiana von and Turkay, Cagatay | en_US |
dc.date.accessioned | 2019-06-02T18:19:21Z | |
dc.date.available | 2019-06-02T18:19:21Z | |
dc.date.issued | 2019 | |
dc.identifier.isbn | 978-3-03868-087-1 | |
dc.identifier.uri | https://doi.org/10.2312/eurova.20191119 | |
dc.identifier.uri | https://diglib.eg.org:443/handle/10.2312/eurova20191119 | |
dc.description.abstract | Rubik's Cube is among the world's most famous puzzle toys. Despite its relatively simple principle, it requires dedicated, carefully planned algorithms to be solved. In this paper, we present an approach to visualize how different solution algorithms navigate through the high-dimensional space of Rubik's Cube states. We use t-distributed stochastic neighbor embedding (t-SNE) to project feature vector representations of cube states to two dimensions. t-SNE preserves the similarity of cube states and leads to clusters of intermediate states and bundles of cube solution pathways in the projection. Our prototype implementation allows interactive exploration of differences between algorithms, showing detailed state information on demand. | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.title | Visualization of Rubik's Cube Solution Algorithms | en_US |
dc.description.seriesinformation | EuroVis Workshop on Visual Analytics (EuroVA) | |
dc.description.sectionheaders | Visual Analytics Methods | |
dc.identifier.doi | 10.2312/eurova.20191119 | |
dc.identifier.pages | 19-23 | |