Show simple item record

dc.contributor.authorEspadoto, Mateusen_US
dc.contributor.authorRodrigues, Francisco Caio Maiaen_US
dc.contributor.authorHirata, Nina S. T.en_US
dc.contributor.authorHirata Jr., Robertoen_US
dc.contributor.authorTelea, Alexandru C.en_US
dc.contributor.editorLandesberger, Tatiana von and Turkay, Cagatayen_US
dc.date.accessioned2019-06-02T18:19:20Z
dc.date.available2019-06-02T18:19:20Z
dc.date.issued2019
dc.identifier.isbn978-3-03868-087-1
dc.identifier.urihttps://doi.org/10.2312/eurova.20191118
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurova20191118
dc.description.abstractWe present a new method for computing inverse projections from 2D spaces to arbitrary high-dimensional spaces. Given any projection technique, we train a deep neural network to learn a low-to-high dimensional mapping based on a projected training set, and next use this mapping to infer the mapping on arbitrary points. We compare our method with two recent inverse projection techniques on three datasets, and show that our method has similar or higher accuracy, is one to two orders of magnitude faster, and delivers result that match well known ground-truth information about the respective high-dimensional data. Visual analytics Unsupervised learning Dimensionality reduction and manifold learning.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectVisualization
dc.subjectVisualization application domains
dc.subjectMachine learning
dc.subjectLearning paradigms
dc.titleDeep Learning Inverse Multidimensional Projectionsen_US
dc.description.seriesinformationEuroVis Workshop on Visual Analytics (EuroVA)
dc.description.sectionheadersVisual Analytics Methods
dc.identifier.doi10.2312/eurova.20191118
dc.identifier.pages13-17


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record