Show simple item record

dc.contributor.authorBernard, Jürgenen_US
dc.contributor.authorHutter, Marcoen_US
dc.contributor.authorRitter, Christianen_US
dc.contributor.authorLehmann, Markusen_US
dc.contributor.authorSedlmair, Michaelen_US
dc.contributor.authorZeppelzauer, Matthiasen_US
dc.contributor.editorLandesberger, Tatiana von and Turkay, Cagatayen_US
dc.date.accessioned2019-06-02T18:19:17Z
dc.date.available2019-06-02T18:19:17Z
dc.date.issued2019
dc.identifier.isbn978-3-03868-087-1
dc.identifier.urihttps://doi.org/10.2312/eurova.20191116
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurova20191116
dc.description.abstractManually labeling data sets is a time-consuming and expensive task that can be accelerated by interactive machine learning and visual analytics approaches. At the core of these approaches are strategies for the selection of candidate instances to label. We introduce degree-of-interest (DOI) functions as atomic building blocks to formalize candidate selection strategies. We introduce a taxonomy of DOI functions and an approach for the visual analysis of DOI functions, which provide novel complementary views on labeling strategies and DOIs, support their in-depth analysis and facilitate their interpretation. Our method shall support the generation of novel and better explanation of existing labeling strategies in future.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleVisual Analysis of Degree-of-Interest Functions to Support Selection Strategies for Instance Labelingen_US
dc.description.seriesinformationEuroVis Workshop on Visual Analytics (EuroVA)
dc.description.sectionheadersVisual Analytics Methods
dc.identifier.doi10.2312/eurova.20191116
dc.identifier.pages1-5


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record