Show simple item record

dc.contributor.authorLi, Jieen_US
dc.contributor.authorChen, Simingen_US
dc.contributor.authorAndrienko, Gennadyen_US
dc.contributor.authorAndrienko, Nataliaen_US
dc.contributor.editorChristian Tominski and Tatiana von Landesbergeren_US
dc.date.accessioned2018-06-02T17:56:57Z
dc.date.available2018-06-02T17:56:57Z
dc.date.issued2018
dc.identifier.isbn978-3-03868-064-2
dc.identifier.urihttp://dx.doi.org/10.2312/eurova.20181105
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurova20181105
dc.description.abstractWe present a visual analytical approach to exploring variation of topic popularity in social media (such as Twitter) over space and time. Our approach includes an analytical pipeline and a multi-view visualization tool. As attempts of topic extraction from very short texts like tweets may not produce meaningful results, we aggregate the texts prior to applying topic modelling techniques. Interactive visualisations support detection of burst events in social media posting activities at different locations, show the spatial, temporal, quantitative, and semantic aspects of these events, and enable the user to explore how popularity of topics varies over cities and time. A case study has been conducted using a real-world tweet dataset.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleVisual Exploration of Spatial and Temporal Variations of Tweet Topic Popularityen_US
dc.description.seriesinformationEuroVis Workshop on Visual Analytics (EuroVA)
dc.description.sectionheadersAnalytics and Guidance
dc.identifier.doi10.2312/eurova.20181105
dc.identifier.pages7-11


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record