Show simple item record

dc.contributor.authorMüller, Martinen_US
dc.contributor.authorBallweg, Kathrinen_US
dc.contributor.authorLandesberger, Tatiana vonen_US
dc.contributor.authorYimam, Seiden_US
dc.contributor.authorFahrer, Ulien_US
dc.contributor.authorBiemann, Chrisen_US
dc.contributor.authorRosenbach, Marcelen_US
dc.contributor.authorRegneri, Michaelaen_US
dc.contributor.authorUlrich, H.en_US
dc.contributor.editorMichael Sedlmair and Christian Tominskien_US
dc.date.accessioned2017-06-12T05:16:22Z
dc.date.available2017-06-12T05:16:22Z
dc.date.issued2017
dc.identifier.isbn978-3-03868-042-0
dc.identifier.urihttp://dx.doi.org/10.2312/eurova.20171111
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurova20171111
dc.description.abstractThe visual exploration of graphs encoding relationships between entities of multiple types (e.g., persons, locations,...) supports journalists in finding newsworthy information in large text collections. Journalists may have interest in certain entity types or their relations such as locations or person-person relations. This interest may change during the exploration process. The exploration of such large graphs is often supported by guidance using a degree-of-interest (DOI) function. Although many DOIs exist, they do not differentiate entity types, rely on additional data, or require complex settings overburding the journalists. We present a novel DOI for graphs with multiple types of entities. We show the interesting subgraph around the focal node and offer information about possible further steps. The user can interactively set her interest in entity types and entity relations. We apply our approach to a graph extracted from WikiLeaks PlusD Cablegate documents and report on journalists' feedback.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACMCCS)
dc.subjectInteraction
dc.subjectVisual Analytics
dc.subjectGuidance
dc.subjectGraphs
dc.subjectDigital Humanities
dc.titleGuidance for Multi-Type Entity Graphs from Text Collectionsen_US
dc.description.seriesinformationEuroVis Workshop on Visual Analytics (EuroVA)
dc.description.sectionheadersInteraction
dc.identifier.doi10.2312/eurova.20171111
dc.identifier.pages1-5


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record