dc.contributor.author | Bernard, Jürgen | en_US |
dc.contributor.author | Dobermann, Eduard | en_US |
dc.contributor.author | Bögl, Markus | en_US |
dc.contributor.author | Röhlig, Martin | en_US |
dc.contributor.author | Vögele, Anna | en_US |
dc.contributor.author | Kohlhammer, Jörn | en_US |
dc.contributor.editor | Natalia Andrienko and Michael Sedlmair | en_US |
dc.date.accessioned | 2016-06-09T09:32:10Z | |
dc.date.available | 2016-06-09T09:32:10Z | |
dc.date.issued | 2016 | en_US |
dc.identifier.isbn | 978-3-03868-016-1 | en_US |
dc.identifier.issn | - | en_US |
dc.identifier.uri | http://diglib.eg.org/handle/10.2312/eurova20161121 | |
dc.identifier.uri | https://doi.org/10.2312/eurova.20161121 | en_US |
dc.description.abstract | Choosing appropriate time series segmentation algorithms and relevant parameter values is a challenging problem. In order to choose meaningful candidates it is important that different segmentation results are comparable. We propose a Visual Analytics (VA) approach to address these challenges in the scope of human motion capture data, a special type of multivariate time series data. In our prototype, users can interactively select from a rich set of segmentation algorithm candidates. In an overview visualization, the results of these segmentations can be compared and adjusted with regard to visualizations of raw data. A similarity-preserving colormap further facilitates visual comparison and labeling of segments. We present our prototype and demonstrate how it can ease the choice of winning candidates from a set of results for the segmentation of human motion capture data. | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.subject | I.3.6 [Computer Graphics] | en_US |
dc.subject | Methodology and Techniques | en_US |
dc.subject | Interaction techniques | en_US |
dc.title | Visual-Interactive Segmentation of Multivariate Time Series | en_US |
dc.description.seriesinformation | EuroVis Workshop on Visual Analytics (EuroVA) | en_US |
dc.description.sectionheaders | Temporal Data Analysis | en_US |
dc.identifier.doi | 10.2312/eurova.20161121 | en_US |
dc.identifier.pages | 31-35 | en_US |