Show simple item record

dc.contributor.authorSeebacher, Danielen_US
dc.contributor.authorStein, Manuelen_US
dc.contributor.authorJanetzko, Halldóren_US
dc.contributor.authorKeim, Daniel A.en_US
dc.contributor.editorNatalia Andrienko and Michael Sedlmairen_US
dc.date.accessioned2016-06-09T09:32:09Z
dc.date.available2016-06-09T09:32:09Z
dc.date.issued2016en_US
dc.identifier.isbn978-3-03868-016-1en_US
dc.identifier.issn-en_US
dc.identifier.urihttp://dx.doi.org/10.2312/eurova.20161118en_US
dc.identifier.urihttps://diglib.eg.org:443/handle/10
dc.description.abstractClaiming intellectual property for an invention by patents is a common way to protect ideas and technological advancements. However, patents allow only the protection of new ideas. Assessing the novelty of filed patent applications is a very time-consuming, yet crucial manual task. Current patent retrieval systems do not make use of all available data and do not explain the similarity between patents. We support patent officials by an enhanced Visual Analytics multi-modal patent retrieval system. Including various similarity measurements and incorporating user feedback, we are able to achieve significantly better query results than state-of-the-art methods.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.3 [Computer Graphics]en_US
dc.subjectPicture/Image Generationen_US
dc.subjectDisplay algorithms H.3.3 [Information Systems]en_US
dc.subjectInformation Search and Retrievalen_US
dc.subjectRelevance feedbacken_US
dc.titlePatent Retrieval: A Multi-Modal Visual Analytics Approachen_US
dc.description.seriesinformationEuroVis Workshop on Visual Analytics (EuroVA)en_US
dc.description.sectionheadersMultivariate Data Analysisen_US
dc.identifier.doi10.2312/eurova.20161118en_US
dc.identifier.pages13-17en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record