Show simple item record

dc.contributor.authorIslam, M. Junayeden_US
dc.contributor.authorXu, Kaien_US
dc.contributor.authorWong, B. L. W.en_US
dc.contributor.editorKai Lawonn and Noeska Smit and Lars Linsen and Robert Kosaraen_US
dc.date.accessioned2018-06-02T17:58:02Z
dc.date.available2018-06-02T17:58:02Z
dc.date.issued2018
dc.identifier.isbn978-3-03868-066-6
dc.identifier.urihttp://dx.doi.org/10.2312/eurorv3.20181145
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/eurorv320181145
dc.description.abstractUncertainty in visualization is an inevitable issue for sensemaking in criminal intelligence. Accuracy and precision of adopted visualization techniques have got greater role in trustworthiness with the system while finding out insights from crime related dataset. In this paper, we have presented a case study to introduce concepts of uncertainty and provenance and their relevance to crime analysis. Our findings show how uncertainties of visualization pipeline influence cognitive biases, human awareness and trust-building during crime analysis and how provenance can enhance analysis processes that include uncertainties.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.6 [Computer Graphics]
dc.subjectMethodology and Techniques
dc.subjectInteraction Techniques
dc.titleUncertainty of Visualizations for SenseMaking in Criminal Intelligence Analysisen_US
dc.description.seriesinformationEuroVis Workshop on Reproducibility, Verification, and Validation in Visualization (EuroRV3)
dc.description.sectionheadersSession 2
dc.identifier.doi10.2312/eurorv3.20181145
dc.identifier.pages25-29


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record