Show simple item record

dc.contributor.authorPlopski, Alexanderen_US
dc.contributor.authorNitschke, Christianen_US
dc.contributor.authorKiyokawa, Kiyoshien_US
dc.contributor.authorSchmalstieg, Dieteren_US
dc.contributor.authorTakemura, Haruoen_US
dc.contributor.editorMasataka Imura and Pablo Figueroa and Betty Mohleren_US
dc.date.accessioned2015-10-28T06:32:04Z
dc.date.available2015-10-28T06:32:04Z
dc.date.issued2015en_US
dc.identifier.isbn978-3-905674-84-2en_US
dc.identifier.issn1727-530Xen_US
dc.identifier.urihttp://dx.doi.org/10.2312/egve.20151327en_US
dc.description.abstractPassive eye-pose estimation methods that recover the eye-pose from natural images generally suffer from low accuracy, the result of a static eye model, and the recovery of the eye model from the estimated iris contour. Active eye-pose estimation methods use precisely calibrated light sources to estimate a user specific eye-model. These methods recover an accurate eye-pose at the cost of complex setups and additional hardware. A common application of eye-pose estimation is the recovery of the point-of-gaze (PoG) given a 3D model of the scene. We propose a novel method that exploits this 3D model to recover the eye-pose and the corresponding PoG from natural images. Our hybrid approach combines active and passive eye-pose estimation methods to recover an accurate eye-pose from natural images. We track the corneal reflection of the scene to estimate an accurate position of the eye and then determine its orientation. The positional constraint allows us to estimate user specific eye-model parameters and improve the orientation estimation. We compare our method with standard iris-contour tracking and show that our method is more robust and accurate than eye-pose estimation from the detected iris with a static iris size. Accurate passive eye-pose and PoG estimation allows users to naturally interact with the scene, e.g., augmented reality content, without the use of infra-red light sources.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.4.8 [Computer Graphics]en_US
dc.subjectScene Analysisen_US
dc.subjectShapeen_US
dc.subjectObject recognition keywordsen_US
dc.subjecteyeen_US
dc.subjectpose estimationen_US
dc.subjectcorneal imagingen_US
dc.subject3D interactionen_US
dc.subjectgaze interactionen_US
dc.titleHybrid Eye Tracking: Combining Iris Contour and Corneal Imagingen_US
dc.description.seriesinformationICAT-EGVE 2015 - International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environmentsen_US
dc.description.sectionheadersFull Papersen_US
dc.identifier.doi10.2312/egve.20151327en_US
dc.identifier.pages183-190en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record