Show simple item record

dc.contributor.authorBanterle, Francescoen_US
dc.contributor.authorArtusi, Alessandroen_US
dc.contributor.editorSerrano, Anaen_US
dc.contributor.editorSlusallek, Philippen_US
dc.date.accessioned2023-05-03T05:58:05Z
dc.date.available2023-05-03T05:58:05Z
dc.date.issued2023
dc.identifier.isbn978-3-03868-212-7
dc.identifier.issn1017-4656
dc.identifier.urihttps://doi.org/10.2312/egt.20231033
dc.identifier.urihttps://diglib.eg.org:443/handle/10.2312/egt20231033
dc.description.abstractIn this tutorial, we introduce how the High Dynamic Range (HDR) imaging field has evolved in this new era where machine learning approaches have become dominant. The main reason of this success is that the use of machine learning and deep learning have automatized many tedious tasks achieving high-quality results overperforming classic methods. After an introduction on classic HDR imaging and its open problem, we will summarize the main approaches for: merging of multiple exposures, single image reconstructions or inverse tone mapping, tone mapping, and display visualization. Finally, we will highlights the still open problems in this machine learning era, and possible direction on how to solve them.en_US
dc.publisherThe Eurographics Associationen_US
dc.rightsAttribution 4.0 International License
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleModern High Dynamic Range Imaging at the Time of Deep Learningen_US
dc.description.seriesinformationEurographics 2023 - Tutorials
dc.description.sectionheadersTutorials
dc.identifier.doi10.2312/egt.20231033
dc.identifier.pages15-19
dc.identifier.pages5 pages


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Attribution 4.0 International License