Show simple item record

dc.contributor.authorPerdikis, Serafeimen_US
dc.contributor.authorTzovaras, Dimitriosen_US
dc.contributor.authorStrintzis, Michael Gerasimosen_US
dc.contributor.editorKaterina Mania and Eric Reinharden_US
dc.date.accessioned2015-07-13T09:53:18Z
dc.date.available2015-07-13T09:53:18Z
dc.date.issued2008en_US
dc.identifier.urihttp://dx.doi.org/10.2312/egs.20081026en_US
dc.description.abstractHuman activity recognition has been a major goal of research in the field of human - computer interaction. This paper proposes a method which employs a hierarchical structure of Hidden Markov Models (Layered HMMs) in an attempt to exploit inherent characteristics of human action for more efficient recognition. The case study concerns actions of the arms of a seated subject and depends on the assumption of a static office environment. The first layer of HMMs detects short, primitive motions with direct targets, while every upper layer processes the previous layer inference to recognize abstract actions of longer time granularities. The results demonstrate the efficiency, the tolerance on noise interpolation and the high degree of person - invariance of the method.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleRecognition of Human Actions using Layered Hidden Markov Modelsen_US
dc.description.seriesinformationEurographics 2008 - Short Papersen_US
dc.description.sectionheadersMotion and Actionen_US
dc.identifier.doi10.2312/egs.20081026en_US
dc.identifier.pages79-82en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record