dc.contributor.author | Sharma, Ritesh | en_US |
dc.contributor.author | Farias, Renato | en_US |
dc.contributor.author | Kallmann, Marcelo | en_US |
dc.contributor.editor | Ritschel, Tobias and Eilertsen, Gabriel | en_US |
dc.date.accessioned | 2020-05-24T13:40:48Z | |
dc.date.available | 2020-05-24T13:40:48Z | |
dc.date.issued | 2020 | |
dc.identifier.isbn | 978-3-03868-104-5 | |
dc.identifier.issn | 1017-4656 | |
dc.identifier.uri | https://doi.org/10.2312/egp.20201037 | |
dc.identifier.uri | https://diglib.eg.org:443/handle/10.2312/egp20201037 | |
dc.description.abstract | The effective integration of local collision avoidance with global path planning becomes a necessity when multi-agent systems need to be simulated in complex cluttered environments. This work presents our first results exploring the new approach of integrating Shortest Path Maps (SPMs) with local collision avoidance in order to provide optimal paths for agents to navigate around obstacles toward their goal locations. Our GPU-based SPM implementation is available. | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.rights | Attribution 4.0 International License | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | ] |
dc.subject | Computing methodologies | |
dc.subject | Collision detection | |
dc.subject | Multi | |
dc.subject | agent planning | |
dc.title | Integrating Local Collision Avoidance with Shortest Path Maps | en_US |
dc.description.seriesinformation | Eurographics 2020 - Posters | |
dc.description.sectionheaders | Posters | |
dc.identifier.doi | 10.2312/egp.20201037 | |
dc.identifier.pages | 7-8 | |