Show simple item record

dc.contributor.authorDürr, Oliveren_US
dc.contributor.authorPauchard, Yvesen_US
dc.contributor.authorBrowarnik, Diegoen_US
dc.contributor.authorAxthelm, Rebekkaen_US
dc.contributor.authorLoeser, Martinen_US
dc.contributor.editorB. Solenthaler and E. Puppoen_US
dc.date.accessioned2015-04-15T18:40:49Z
dc.date.available2015-04-15T18:40:49Z
dc.date.issued2015en_US
dc.identifier.urihttp://dx.doi.org/10.2312/egp.20151036en_US
dc.description.abstractIn this paper we describe a fast and accurate pipeline for real-time face recognition that is based on a convolutional neural network (CNN) and requires only moderate computational resources. After training the CNN on a desktop PC we employed a Raspberry Pi, model B, for the classification procedure. Here, we reached a performance of approximately 2 frames per second and more than 97% recognition accuracy. The proposed approach outperforms all of OpenCV's algorithms with respect to both accuracy and speed and shows the applicability of recent deep learning techniques to hardware with limited computational performanceen_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.5.1 [Pattern Recognition]en_US
dc.subjectModelsen_US
dc.subjectNeural Netsen_US
dc.subjectI.5.2 [Pattern Recognition]en_US
dc.subjectDesign Methodologyen_US
dc.subjectClassifier Design and Evaluationen_US
dc.subjectI.5.4 [Pattern Recognition]en_US
dc.subjectApplicationsen_US
dc.subjectComputer Visionen_US
dc.titleDeep Learning on a Raspberry Pi for Real Time Face Recognitionen_US
dc.description.seriesinformationEG 2015 - Postersen_US
dc.description.sectionheadersPostersen_US
dc.identifier.doi10.2312/egp.20151036en_US
dc.identifier.pages11-12en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record