Show simple item record

dc.contributor.authorNanjappa, Ashwinen_US
dc.contributor.authorXu, Chien_US
dc.contributor.authorCheng, Lien_US
dc.contributor.editorB. Solenthaler and E. Puppoen_US
dc.date.accessioned2015-04-15T18:40:48Z
dc.date.available2015-04-15T18:40:48Z
dc.date.issued2015en_US
dc.identifier.urihttp://dx.doi.org/10.2312/egp.20151033en_US
dc.description.abstractWe present GHand, a GPU algorithm for markerless hand pose estimation from a single depth image obtained from a commodity depth camera. Our method uses a dual random forest approach: the first forest estimates position and orientation of hand in 3D, while the second forest determines the joint angles of the kinematic chain of our hand model. GHand runs entirely on GPU, at a speed of 64 FPS with an average 3D joint position error of 20mm. It can detect complex poses with interlocked and occluded fingers and hidden fingertips. It requires no calibration before use, no retraining for differing hand sizes, can be used in top or front mounted setup and with moving camera.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.1 [Computer Graphics]en_US
dc.subjectHardware Architectureen_US
dc.subjectGraphics processorsen_US
dc.subjectI.3.6 [Computer Graphics]en_US
dc.subjectMethodology and Techniquesen_US
dc.subjectInteraction techniquesen_US
dc.titleGHand: A GPU Algorithm for Realtime Hand Pose Estimation Using Depth Cameraen_US
dc.description.seriesinformationEG 2015 - Postersen_US
dc.description.sectionheadersPostersen_US
dc.identifier.doi10.2312/egp.20151033en_US
dc.identifier.pages5-6en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record