Show simple item record

dc.contributor.authorShin, Younginen_US
dc.contributor.authorBajaj, Chandrajiten_US
dc.contributor.editorOliver Deussen and Charles Hansen and Daniel Keim and Dietmar Saupeen_US
dc.date.accessioned2014-01-30T07:46:08Z
dc.date.available2014-01-30T07:46:08Z
dc.date.issued2004en_US
dc.identifier.isbn3-905673-07-Xen_US
dc.identifier.issn1727-5296en_US
dc.identifier.urihttp://dx.doi.org/10.2312/VisSym/VisSym04/193-200en_US
dc.description.abstractAuralization is the process of extracting and displaying meaningful information in the form of sound from data. Through not only visualization but also auralization, users may have better understandings of the data, especially when it is visually complicated. In this work, a field auralization technique is introduced, which objective is at the sound synthesis from field information represented as 3D time-varying volume data. Our technique takes a hybrid approach between parameter mapping and direct simulation. During preprocessing, acoustic strengths are computed at each vertex at each time step of volume data. During interaction, users navigate within the volume space and audio frames are computed by integrating the radiations from the sources. A number of problems inherent in this problem and our solutions are discussed.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleAuralization I: Vortex Sound Synthesisen_US
dc.description.seriesinformationEurographics / IEEE VGTC Symposium on Visualizationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record