dc.contributor.author | Wiley, D. F. | en_US |
dc.contributor.author | Childs, H. R. | en_US |
dc.contributor.author | Gregorski, B. F. | en_US |
dc.contributor.author | Hamann, B. | en_US |
dc.contributor.author | Joy, K. I. | en_US |
dc.contributor.editor | G.-P. Bonneau and S. Hahmann and C. D. Hansen | en_US |
dc.date.accessioned | 2014-01-30T07:36:35Z | |
dc.date.available | 2014-01-30T07:36:35Z | |
dc.date.issued | 2003 | en_US |
dc.identifier.isbn | 3-905673-01-0 | en_US |
dc.identifier.issn | 1727-5296 | en_US |
dc.identifier.uri | http://dx.doi.org/10.2312/VisSym/VisSym03/167-176 | en_US |
dc.description.abstract | We show how to extract a contour line (or isosurface) from quadratic elements - specifically from quadratic triangles and tetrahedra. We also devise how to transform the resulting contour line (or surface) into a quartic curve (or surface) based on a curved-triangle (curved-tetrahedron) mapping. A contour in a bivariate quadratic function defined over a triangle in parameter space is a conic section and can be represented by a rational-quadratic function, while in physical space it is a rational quartic. An isosurface in the trivariate case is represented as a rational-quadratic patch in parameter space and a rational-quartic patch in physical space. The resulting contour surfaces can be rendered efficiently in hardware. | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.title | Contouring Curved Quadratic Elements | en_US |
dc.description.seriesinformation | Eurographics / IEEE VGTC Symposium on Visualization | en_US |