Show simple item record

dc.contributor.authorWiley, D. F.en_US
dc.contributor.authorChilds, H. R.en_US
dc.contributor.authorGregorski, B. F.en_US
dc.contributor.authorHamann, B.en_US
dc.contributor.authorJoy, K. I.en_US
dc.contributor.editorG.-P. Bonneau and S. Hahmann and C. D. Hansenen_US
dc.date.accessioned2014-01-30T07:36:35Z
dc.date.available2014-01-30T07:36:35Z
dc.date.issued2003en_US
dc.identifier.isbn3-905673-01-0en_US
dc.identifier.issn1727-5296en_US
dc.identifier.urihttp://dx.doi.org/10.2312/VisSym/VisSym03/167-176en_US
dc.description.abstractWe show how to extract a contour line (or isosurface) from quadratic elements - specifically from quadratic triangles and tetrahedra. We also devise how to transform the resulting contour line (or surface) into a quartic curve (or surface) based on a curved-triangle (curved-tetrahedron) mapping. A contour in a bivariate quadratic function defined over a triangle in parameter space is a conic section and can be represented by a rational-quadratic function, while in physical space it is a rational quartic. An isosurface in the trivariate case is represented as a rational-quadratic patch in parameter space and a rational-quartic patch in physical space. The resulting contour surfaces can be rendered efficiently in hardware.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleContouring Curved Quadratic Elementsen_US
dc.description.seriesinformationEurographics / IEEE VGTC Symposium on Visualizationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record