Show simple item record

dc.contributor.authorLakare, Sarangen_US
dc.contributor.authorKaufman, Arieen_US
dc.contributor.editorG.-P. Bonneau and S. Hahmann and C. D. Hansenen_US
dc.date.accessioned2014-01-30T07:36:33Z
dc.date.available2014-01-30T07:36:33Z
dc.date.issued2003en_US
dc.identifier.isbn3-905673-01-0en_US
dc.identifier.issn1727-5296en_US
dc.identifier.urihttp://dx.doi.org/10.2312/VisSym/VisSym03/113-122en_US
dc.description.abstractWe present a technique to extract regions from a volumetric dataset without introducing any aliasing so that the extracted volume can be explored using direct volume rendering techniques. Extracting regions using binary masks generated by contemporary segmentation approaches typically introduces aliasing at the boundary of the extracted regions. This aliasing is especially visible when the dataset is visualized using direct volume rendering. Our algorithm uses the binary mask only to locate the boundary. The main idea of the algorithm is to retain the natural fuzziness at the boundary of a region even after it is extracted. To achieve that, intensities of the boundary voxels are flipped so that they are now representing a fuzzy boundary with the empty region surrounding it, while preserving the boundary position.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleAnti-Aliased Volume Extractionen_US
dc.description.seriesinformationEurographics / IEEE VGTC Symposium on Visualizationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record