Show simple item record

dc.contributor.authorHétroy, F.en_US
dc.contributor.authorAttali, D.en_US
dc.contributor.editorG.-P. Bonneau and S. Hahmann and C. D. Hansenen_US
dc.date.accessioned2014-01-30T07:36:32Z
dc.date.available2014-01-30T07:36:32Z
dc.date.issued2003en_US
dc.identifier.isbn3-905673-01-0en_US
dc.identifier.issn1727-5296en_US
dc.identifier.urihttp://dx.doi.org/10.2312/VisSym/VisSym03/067-074en_US
dc.description.abstractWe define constrictions on a surface as simple closed geodesic curves, i.e. curves whose length is locally minimal. They can be of great interests in order to cut the surface in smaller parts. In this paper, we present a method to detect constrictions on closed triangulated surfaces. Our algorithm is based on a progressive approach. First, the surface is simplified by repeated edge collapses. The simplification continues until we detect an edge whose collapse would change the topology of the surface. It happens when three edges of the surface form a triangle that does not belong to the surface. The three edges define what we call a seed curve and are used to initialize the search of a constriction. Secondly, the constriction is progressively constructed by incrementally refining the simplified surface until the initial surface is retrieved. At each step of this refinement process, the constriction is updated. Some experimental results are provided.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleDetection of constrictions on closed polyhedral surfacesen_US
dc.description.seriesinformationEurographics / IEEE VGTC Symposium on Visualizationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record