Show simple item record

dc.contributor.authorWiley, D. F.en_US
dc.contributor.authorChilds, H. R.en_US
dc.contributor.authorHamann, B.en_US
dc.contributor.authorJoy, K. I.en_US
dc.contributor.authorMax, N. L.en_US
dc.contributor.editorD. Ebert and P. Brunet and I. Navazoen_US
dc.date.accessioned2014-01-30T06:50:41Z
dc.date.available2014-01-30T06:50:41Z
dc.date.issued2002en_US
dc.identifier.isbn1-58113-536-Xen_US
dc.identifier.issn1727-5296en_US
dc.identifier.urihttp://dx.doi.org/10.2312/VisSym/VisSym02/133-140en_US
dc.description.abstractWe present a method for hierarchical data approximation using quadratic simplicial elements for domain decomposition and field approximation. Higher-order simplicial elements can approximate data better than linear elements. Thus, fewer quadratic elements are required to achieve similar approximation quality. We use quadratic basis functions and compute best quadratic simplicial spline approximations that are C0-continuous everywhere. We adaptively refine a simplicial approximation by identifying and bisecting simplicial elements with largest errors. It is possible to store multiple approximation levels of increasing quality. We have tested the suitability and efficiency of our hierarchical data approximation scheme by applying it to several data sets.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleBest Quadratic Spline Approximation for Hierarchical Visualizationen_US
dc.description.seriesinformationEurographics / IEEE VGTC Symposium on Visualizationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record