Show simple item record

dc.contributor.authorBroersen, Alexanderen_US
dc.contributor.authorLiere, Robert vanen_US
dc.contributor.editorKen Brodlie and David Duke and Ken Joyen_US
dc.date.accessioned2014-01-31T06:52:03Z
dc.date.available2014-01-31T06:52:03Z
dc.date.issued2005en_US
dc.identifier.isbn3-905673-19-3en_US
dc.identifier.issn1727-5296en_US
dc.identifier.urihttp://dx.doi.org/10.2312/VisSym/EuroVis05/117-123en_US
dc.description.abstractIn this paper we present a new application of the principal component analysis (PCA) to generate multidimensional transfer functions. These transfer functions are needed in the volumetric visualization of spectral data to isolate regions that contain interesting peak-shaped features. Both large and small peaks can be equally important and represent the presence of different chemical elements in a dataset. Principal component analysis separates these peaks in different uncorrelated components and can simultaneously identify spatial patterns. This approach is characterized by the direct linkage between the resulting spectral and spatial components. Our method enables us to create an opacity map from these components. One or more mappings can be selected to highlight features in three-dimensional volume visualization.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display algorithms I.4.10 [Image Processing and Computer Vision]: Multidimensional I.5.3 [Pattern Recognition]: Algorithmsen_US
dc.titleTransfer Functions for Imaging Spectroscopy Data using Principal Component Analysisen_US
dc.description.seriesinformationEUROVIS 2005: Eurographics / IEEE VGTC Symposium on Visualizationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record