Show simple item record

dc.contributor.authorMoench, Tobiasen_US
dc.contributor.authorKubisch, Christophen_US
dc.contributor.authorLawonn, Kaien_US
dc.contributor.authorWestermann, Ruedigeren_US
dc.contributor.authorPreim, Bernharden_US
dc.contributor.editorTimo Ropinski and Anders Ynnerman and Charl Botha and Jos Roerdinken_US
dc.date.accessioned2013-11-08T10:34:19Z
dc.date.available2013-11-08T10:34:19Z
dc.date.issued2012en_US
dc.identifier.isbn978-3-905674-38-5en_US
dc.identifier.issn2070-5778en_US
dc.identifier.urihttp://dx.doi.org/10.2312/VCBM/VCBM12/091-098en_US
dc.description.abstractSurface models derived from medical image data often exhibit artifacts, such as noise and staircases, which can be reduced by applying mesh smoothing filters. Usually, an iterative adaption of smoothing parameters to the specific data and continuous re-evaluation of accuracy and curvature is required. Depending on the number of vertices and the filter algorithm, computation time may vary strongly and interfere with an interactive mesh generation procedure. In this paper, we present an approach to improve the handling of mesh smoothing filters. Based on a GPU mesh smoothing implementation, model quality is evaluated in real-time and provided to the user as quality graphs to support the mental optimization of input parameters. Moreover, this framework is used to find optimal smoothing parameters automatically and to provide data-specific parameter suggestions.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectComputer Graphics [I.3.5]en_US
dc.subjectComputational Geometry and Object Modelingen_US
dc.subjectCurveen_US
dc.subjectsurfaceen_US
dc.subjectsoliden_US
dc.subjectand object representationsen_US
dc.titleVisually Guided Mesh Smoothing for Medical Applicationsen_US
dc.description.seriesinformationEurographics Workshop on Visual Computing for Biology and Medicineen_US


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record