Show simple item record

dc.contributor.authorAlexa, Marcen_US
dc.contributor.authorAdamson, Andersen_US
dc.contributor.editorMarkus Gross and Hanspeter Pfister and Marc Alexa and Szymon Rusinkiewiczen_US
dc.date.accessioned2014-01-29T16:25:42Z
dc.date.available2014-01-29T16:25:42Z
dc.date.issued2004en_US
dc.identifier.isbn3-905673-09-6en_US
dc.identifier.issn1811-7813en_US
dc.identifier.urihttp://dx.doi.org/10.2312/SPBG/SPBG04/149-155en_US
dc.description.abstractLevin s MLS projection operator allows defining a surface from a set of points and represents a versatile procedure to generate points on this surface. Practical problems of MLS surfaces are a complicated non-linear optimization to compute a tangent frame and the (commonly overlooked) fact that the normal to this tangent frame is not the surface normal. An alternative definition of Point Set Surfaces, inspired by the MLS projection, is the implicit surface version of Adamson & Alexa.We use this surface definition to show how to compute exact surface normals and present simple, efficient projection operators. The exact normal computation also allows computing orthogonal projections.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACM CCS): G.1.2 [Numerical Analysis]: Approximation of surfaces and contours I.3.5 [Computer Graphics]: Curve, surface, solid, and object representationsen_US
dc.titleOn Normals and Projection Operators for Surfaces Defined by Point Setsen_US
dc.description.seriesinformationSPBG'04 Symposium on Point - Based Graphics 2004en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record