Show simple item record

dc.contributor.authorLee, Yunjinen_US
dc.contributor.authorLee, Seungyongen_US
dc.contributor.authorIvrissimtzis, Ioannisen_US
dc.contributor.authorSeidel, Hans-Peteren_US
dc.contributor.editorAlla Sheffer and Konrad Polthieren_US
dc.date.accessioned2014-01-29T08:14:08Z
dc.date.available2014-01-29T08:14:08Z
dc.date.issued2006en_US
dc.identifier.isbn3-905673-24-Xen_US
dc.identifier.issn1727-8384en_US
dc.identifier.urihttp://dx.doi.org/10.2312/SGP/SGP06/231-234en_US
dc.description.abstractThis paper proposes a general framework for overfitting control in surface reconstruction from noisy point data. The problem we deal with is how to create a model that will capture as much detail as possible and simultaneously avoid reproducing the noise of the input points. The proposed framework is based on extra-sample validation. It is fully automatic and can work in conjunction with any surface reconstruction algorithm. We test the framework with a Radial Basis Function algorithm, Multi-level Partition of Unity implicits, and the Power Crust algorithm.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling; I.6.5 [Simulation and modeling]: Model Developmenten_US
dc.titleOverfitting Control for Surface Reconstructionen_US
dc.description.seriesinformationSymposium on Geometry Processingen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record