Show simple item record

dc.contributor.authorPodolak, Joshuaen_US
dc.contributor.authorRusinkiewicz, Szymonen_US
dc.contributor.editorMathieu Desbrun and Helmut Pottmannen_US
dc.date.accessioned2014-01-29T09:31:06Z
dc.date.available2014-01-29T09:31:06Z
dc.date.issued2005en_US
dc.identifier.isbn3-905673-24-Xen_US
dc.identifier.issn1727-8384en_US
dc.identifier.urihttp://dx.doi.org/10.2312/SGP/SGP05/033-041en_US
dc.description.abstractThe increased use of scanned geometry for applications in computer graphics and 3D hardcopy output has highlighted the need for general, robust algorithms for reconstruction of watertight 3D models given partial polygonal meshes as input. We present an algorithm for 3D hole filling based on a decomposition of space into atomic volumes, which are each determined to be either completely inside or completely outside the model. By defining the output model as the union of interior atomic volumes we guarantee that the resulting mesh is watertight. Individual volumes are labeled as "inside" or "outside" by computing a minimum-cost cut of a graph representation of the atomic volume structure, patching all the holes simultaneously in a globally sensitive manner. User control is provided to select between multiple topologically distinct, yet still valid, ways of filling holes. Finally, we use an octree decomposition of space to provide output-sensitive computation time. We demonstrate the ability of our algorithm to fill complex, non-planar holes in large meshes obtained from 3D scanning devices.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleAtomic Volumes for Mesh Completionen_US
dc.description.seriesinformationEurographics Symposium on Geometry Processing 2005en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record