Show simple item record

dc.contributor.authorShinar, Tamaren_US
dc.contributor.authorSchroeder, Craigen_US
dc.contributor.authorFedkiw, Ronalden_US
dc.contributor.editorMarkus Gross and Doug Jamesen_US
dc.date.accessioned2014-01-29T07:37:15Z
dc.date.available2014-01-29T07:37:15Z
dc.date.issued2008en_US
dc.identifier.isbn978-3-905674-10-1en_US
dc.identifier.issn1727-5288en_US
dc.identifier.urihttp://dx.doi.org/10.2312/SCA/SCA08/095-103en_US
dc.description.abstractWe propose a framework for the full two-way coupling of rigid and deformable bodies, which is achieved with both a unified time integration scheme as well as individual two-way coupled algorithms at each point of that scheme. As our algorithm is two-way coupled in every fashion, we do not require ad hoc methods for dealing with stability issues or interleaving parts of the simulation. We maintain the ability to treat the key desirable aspects of rigid bodies (e.g. contact, collision, stacking, and friction) and deformable bodies (e.g. arbitrary constitutive models, thin shells, and self-collisions). In addition, our simulation framework supports more advanced features such as proportional derivative controlled articulation between rigid bodies. This not only allows for the robust simulation of a number of new phenomena, but also directly lends itself to the design of deformable creatures with proportional derivative controlled articulated rigid skeletons that interact in a life-like way with their environmenten_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling, Physically based modelingen_US
dc.titleTwo-way Coupling of Rigid and Deformable Bodiesen_US
dc.description.seriesinformationEurographics/SIGGRAPH Symposium on Computer Animationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record