GPU Accelerated Needle Insertion Simulation using Meshfree Methods
View/ Open
Date
2010Author
Shahingohar, Aria
deRibaupierre, Sandrine
Eagleson, Roy
Metadata
Show full item recordAbstract
Needle insertion is a common practice used in many different medical procedures. Therefore, simulation of needle insertion is of great importance for multiple purposes such as training, planning and robotic assisted interventions. Modeling of soft tissue plays an important role in the needle insertion simulation, but the use of mesh based methods such as the Finite Element Method is frustrated by the need for remeshing in the neighbourhood of the needle tip. We have developed a novel method that uses meshfree methods for the tissue deformation model. In this method new tissue nodes are added on the needle shaft as the needle is inserted into the tissue. We have used a stack based approach to keep the state of the model; therefore, we have avoided over-sampling the model due to continuous needle insertion and extraction. Using this approach we have simulated the insertion of a straight rigid needle into soft tissue. In addition, we have utilized Nvidia's CUDA technology to accelerate the methods used in our framework. Our framework allows dynamic resampling and addition of new nodes while using CUDA. Our results show the usability and flexibility of the new method. By using the CUDA technology we were able to achieve up to 20 times speed for large meshes.
BibTeX
@inproceedings {10.2312:PE:vriphys:vriphys10:135-144,
booktitle = {Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2010)},
editor = {Kenny Erleben and Jan Bender and Matthias Teschner},
title = {{GPU Accelerated Needle Insertion Simulation using Meshfree Methods}},
author = {Shahingohar, Aria and deRibaupierre, Sandrine and Eagleson, Roy},
year = {2010},
publisher = {The Eurographics Association},
ISBN = {978-3-905673-78-4},
DOI = {10.2312/PE/vriphys/vriphys10/135-144}
}
booktitle = {Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2010)},
editor = {Kenny Erleben and Jan Bender and Matthias Teschner},
title = {{GPU Accelerated Needle Insertion Simulation using Meshfree Methods}},
author = {Shahingohar, Aria and deRibaupierre, Sandrine and Eagleson, Roy},
year = {2010},
publisher = {The Eurographics Association},
ISBN = {978-3-905673-78-4},
DOI = {10.2312/PE/vriphys/vriphys10/135-144}
}
Collections
Related items
Showing items related by title, author, creator and subject.
-
Time-constrained Animation Rendering on Desktop Grids
Aggarwal, Vibhor; Debattista, Kurt; Bashford-Rogers, Thomas; Chalmers, Alan (The Eurographics Association, 2012)The computationally intensive nature of high-fidelity rendering has led to a dependence on parallel infrastructures for generating animations. However, such an infrastructure is expensive thereby restricting easy access ... -
Texturing and Hypertexturing of Volumetric Objects
Miller, Chris M.; Jones, Mark W. (The Eurographics Association, 2005)Texture mapping is an extremely powerful and flexible tool for adding complex surface detail to an object. This paper introduces a method of surface texturing and hypertexturing complex volumetric objects in real-time. We ... -
Ray Tracing Dynamic Scenes with Shadows on the GPU
Guntury, Sashidhar; Narayanan, P. J. (The Eurographics Association, 2010)We present fast ray tracing of dynamic scenes in this paper with primary and shadow rays. We present a GPUfriendly strategy to bring coherency to shadow rays, based on previous work on grids as acceleration structures. We ...