Show simple item record

dc.contributor.authorAuzinger, Thomasen_US
dc.contributor.authorWimmer, Michaelen_US
dc.contributor.editorMichael Bronstein and Jean Favre and Kai Hormannen_US
dc.date.accessioned2014-02-01T16:26:18Z
dc.date.available2014-02-01T16:26:18Z
dc.date.issued2013en_US
dc.identifier.isbn978-3-905674-51-4en_US
dc.identifier.urihttp://dx.doi.org/10.2312/PE.VMV.VMV13.223-224en_US
dc.description.abstractIn this poster we present an overview of exact anti-aliasing (AA) methods in rasterization. In contrast to the common supersampling approaches for visibility AA (e.g. MSAA) or both visibility and shading AA (e.g. SSAA, decoupled sampling), prefiltering provides the mathematically exact solution to the aliasing problem. Instead of averaging a set a supersamples, the input data is convolved with a suitable low-pass filter before sampling is applied. Recent work showed that for both visibility signals and simple shading models, a closed-form solution to the convolution integrals can be found. As our main contribution, we present a classification of both sample-based and analytic AA approaches for rasterization and analyse their strengths and weaknesses.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.3 [Computer Graphics]en_US
dc.subjectPicture/Image Generationen_US
dc.subjectLine and curve generationen_US
dc.titleSampled and Analytic Rasterizationen_US
dc.description.seriesinformationVision, Modeling & Visualizationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • VMV13
    ISBN 978-3-905674-51-4

Show simple item record