Show simple item record

dc.contributor.authorGarro, Valeriaen_US
dc.contributor.authorGiachetti, Andreaen_US
dc.contributor.editorMichael Bronstein and Jean Favre and Kai Hormannen_US
dc.date.accessioned2014-02-01T16:26:03Z
dc.date.available2014-02-01T16:26:03Z
dc.date.issued2013en_US
dc.identifier.isbn978-3-905674-51-4en_US
dc.identifier.urihttp://dx.doi.org/10.2312/PE.VMV.VMV13.073-080en_US
dc.description.abstractIn this paper we propose a new simple and efficient method to characterize shapes by segmenting their elongated parts and characterizing them with their centerlines. We call it Tubular Section Tracking, because it consists of slicing the interested volume along different directions, tracking centroids of the extracted sections with approximately constant centroid position, area and eccentricity and refining the extracted lines with a post processing step removing bad branches and centering, joining and extending the relevant ones. We show that, even using just a few slicing directions (in some cases even just three perpendicular directions), the method is able to obtain good results, approximately pose independent and that the extracted lines can be more informative on the relevant feature of the objects than the classical skeletal lines extracted as subsets of the medial axis. Estimated lines can be used to segment shapes into meaningful parts and compute useful parameters (e.g. length, diameters).en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.5 [Computer Graphics]en_US
dc.subjectComputational Geometry and Object Modelingen_US
dc.subjectCurveen_US
dc.subjectsurfaceen_US
dc.subjectsoliden_US
dc.subjectand object representationsen_US
dc.titleA Tracking Approach for the Skeletonization of Tubular Parts of 3D Shapesen_US
dc.description.seriesinformationVision, Modeling & Visualizationen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • VMV13
    ISBN 978-3-905674-51-4

Show simple item record