Spectral Analysis of Higher-Order and BFECC Texture Advection
Abstract
We present a spectral analysis of higher-order texture advection in combination with Back and Forth Error Compensation and Correction (BFECC). Semi-Lagrangian texture advection techniques exhibit high numerical diffusion, which acts as a low-pass filter and tends to smooth out high frequencies. In the spatial domain, numerical diffusion leads to a loss of details and causes a blurred image. To reduce this effect, higher-order interpolation methods or BFECC can be employed separately. In this paper, we combine both approaches and analyze the quality of different compositions of higher-order interpolation schemes with and without BFECC. We employ radial power spectrum diagrams for different advection times and input textures to evaluate the conservation of the spectrum up to fifth-order polynomials. Our evaluation shows that third-order backward advection delivers a good compromise between quality and computational costs.
BibTeX
@inproceedings {10.2312:PE:VMV:VMV12:087-094,
booktitle = {Vision, Modeling and Visualization},
editor = {Michael Goesele and Thorsten Grosch and Holger Theisel and Klaus Toennies and Bernhard Preim},
title = {{Spectral Analysis of Higher-Order and BFECC Texture Advection}},
author = {Netzel, Rudolf and Ament, Marco and Burch, Michael and Weiskopf, Daniel},
year = {2012},
publisher = {The Eurographics Association},
ISBN = {978-3-905673-95-1},
DOI = {10.2312/PE/VMV/VMV12/087-094}
}
booktitle = {Vision, Modeling and Visualization},
editor = {Michael Goesele and Thorsten Grosch and Holger Theisel and Klaus Toennies and Bernhard Preim},
title = {{Spectral Analysis of Higher-Order and BFECC Texture Advection}},
author = {Netzel, Rudolf and Ament, Marco and Burch, Michael and Weiskopf, Daniel},
year = {2012},
publisher = {The Eurographics Association},
ISBN = {978-3-905673-95-1},
DOI = {10.2312/PE/VMV/VMV12/087-094}
}