Show simple item record

dc.contributor.authorInterrante, Victoriaen_US
dc.contributor.authorO'Rourke, Eleanoren_US
dc.contributor.authorGray, Leanneen_US
dc.contributor.authorAnderson, Leeen_US
dc.contributor.authorRies, Brianen_US
dc.contributor.editorBernd Froehlich and Roland Blach and Robert van Liereen_US
dc.date.accessioned2014-01-31T20:24:51Z
dc.date.available2014-01-31T20:24:51Z
dc.date.issued2007en_US
dc.identifier.isbn978-3-905673-64-7en_US
dc.identifier.urihttp://dx.doi.org/10.2312/PE/VE2007Short/075-078en_US
dc.description.abstractWhen an immersive virtual environment spans an area that is larger than the available physical space for real walking, one may use an augmented walking method such as Seven League Boots to enable participants to explore the space while gaining proprioceptive feedback that is similar to what they would experience with normal walking. In this paper, we present the results of a preliminary experiment in which we seek to quantitatively assess the extent to which participants are able to make more accurate spatial judgments about the locations of previously-seen targets in a complicated virtual city environment, experienced using a head-mounted display, after traveling to them using augmented real walking ( boots ) versus virtual walking enabled by a button press on a hand-held wand. In a series of trials, we ask participants to follow paths of increasing complexity from a home base to different hidden targets in the environment and back. At each endpoint, with the path markings turned off, we ask participants to point, through the intervening alleyway walls, to the location they believe they started from. Participants are able to make real turns with their bodies in both locomotion conditions, however they are able to make real forward movement only under the augmented walking condition. Each participant completes eight trials under each locomotion condition, with the target locations and the order of experiencing each method counterbalanced between participants. In data collected from six participants so far, we are finding that the median angle error is significantly greater, overall, in the wand locomotion condition than in the boots locomotion condition, and that the errors tend to increase, overall, as the path complexity increases (from two segments to four segments) in the wand locomotion condition but not in the boots locomotion condition.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniquesen_US
dc.titleA Quantitative Assessment of the Impact on Spatial Understanding of Exploring a Complex Immersive Virtual Environment using Augmented Real Walking versus Flyingen_US
dc.description.seriesinformationEurographics Symposium on Virtual Environments, Short Papers and Postersen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record