Show simple item record

dc.contributor.authorGarcía-Fernández, Francisco J.en_US
dc.contributor.authorVerleysen, Michelen_US
dc.contributor.authorLee, John A.en_US
dc.contributor.authorDíaz, Ignacioen_US
dc.contributor.editorM. Aupetit and L. van der Maatenen_US
dc.date.accessioned2014-02-01T15:50:30Z
dc.date.available2014-02-01T15:50:30Z
dc.date.issued2013en_US
dc.identifier.isbn978-3-905674-53-8en_US
dc.identifier.urihttp://dx.doi.org/10.2312/PE.VAMP.VAMP2013.005-009en_US
dc.description.abstractThe analysis of the big volumes of data requires efficient and robust dimension reduction techniques to represent data into lower-dimensional spaces, which ease human understanding. This paper presents a study of the stability, robustness and performance of some of these dimension reduction algorithms with respect to algorithm and data parameters, which usually have a major influence in the resulting embeddings. This analysis includes the performance of a large panel of techniques on both artificial and real datasets, focusing on the geometrical variations experimented when changing different parameters. The results are presented by identifying the visual weaknesses of each technique, providing some suitable data-processing tasks to enhance the stability.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.2.6 [Computing Methodologies]en_US
dc.subjectArtificial Intelligenceen_US
dc.subjectMachine learningen_US
dc.titleStability Comparison of Dimensionality Reduction Techniques Attending to Data and Parameter Variationsen_US
dc.description.seriesinformationEuroVis Workshop on Visual Analytics using Multidimensional Projectionsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record