Show simple item record

dc.contributor.authorWang, Jianzhongen_US
dc.contributor.authorCheng, Fuhuaen_US
dc.contributor.editorBruno Levy and Xin Tong and KangKang Yinen_US
dc.date.accessioned2014-01-27T18:18:12Z
dc.date.available2014-01-27T18:18:12Z
dc.date.issued2013en_US
dc.identifier.isbn978-3-905674-50-7en_US
dc.identifier.urihttp://dx.doi.org/10.2312/PE.PG.PG2013short.029-034en_US
dc.description.abstractSubdivision surfaces have been widely used in computer graphics and can be classified into two categories, approximating and interpolatory. Representative approximating schemes are Catmull-Clark (quad) and Loop (triangular). Although widely used, one issue remains with the approximating schemes, i.e., the process of interpolating a set of data points is a global process so it is difficult to interpolate large data sets. In this paper, we present a local interpolation scheme for quad subdivision surfaces through appending a G2 Bezier crust to the underlying surface, and show that this local interpolation scheme does not change the curvatures across the boundaries of underlying subdivision patches, therefore, one obtains high quality interpolating limit surfaces for engineering and graphics applications efficiently.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectI.3.5 [Computer Graphics]en_US
dc.subjectComputational Geometry and Object Modelingen_US
dc.subjectCurveen_US
dc.subjectsurfaceen_US
dc.subjectsoliden_US
dc.subjectand object representationsen_US
dc.titleBezier Crust on Quad Subdivision Surfaceen_US
dc.description.seriesinformationPacific Graphics Short Papersen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record