Show simple item record

dc.contributor.authorHeinrich, Julianen_US
dc.contributor.authorStasko, Johnen_US
dc.contributor.authorWeiskopf, Danielen_US
dc.contributor.editorMiriah Meyer and Tino Weinkaufsen_US
dc.date.accessioned2013-11-08T10:22:31Z
dc.date.available2013-11-08T10:22:31Z
dc.date.issued2012en_US
dc.identifier.isbn978-3-905673-91-3en_US
dc.identifier.urihttp://dx.doi.org/10.2312/PE/EuroVisShort/EuroVisShort2012/037-041en_US
dc.description.abstractWe introduce the parallel coordinates matrix (PCM) as the counterpart to the scatterplot matrix (SPLOM). Using a graph-theoretic approach, we determine a list of axis orderings such that all pairwise relations can be displayed without redundancy while each parallel-coordinates plot can be used independently to visualize all variables of the dataset. Therefore, existing axis-ordering algorithms, rendering techniques, and interaction methods can easily be applied to the individual parallel-coordinates plots. We demonstrate the value of the PCM in two case studies and show how it can serve as an overview visualization for parallel coordinates. Finally, we apply existing focus-and-context techniques in an interactive setup to support a detailed analysis of multivariate data.en_US
dc.publisherThe Eurographics Associationen_US
dc.subjectCategories and Subject Descriptors (according to ACM CCS): Probability and Statistics [G.3]: Multivariate Statistics, Computer Graphics [I.3.3]: Picture/Image Generation-Display algorithmsen_US
dc.titleThe Parallel Coordinates Matrixen_US
dc.description.seriesinformationEuroVis - Short Papersen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record