Show simple item record

dc.contributor.authorKienreich, Wolfgangen_US
dc.contributor.authorSeifert, Christinen_US
dc.contributor.editorKresimir Matkovic and Giuseppe Santuccien_US
dc.date.accessioned2013-11-08T10:21:28Z
dc.date.available2013-11-08T10:21:28Z
dc.date.issued2012en_US
dc.identifier.isbn978-3-905673-89-0en_US
dc.identifier.urihttp://dx.doi.org/10.2312/PE/EuroVAST/EuroVA12/037-041en_US
dc.description.abstractWhen a classification algorithm does not work on a data set, it is a non-trivial problem to figure out what went wrong on a technical level. It is even more challenging to communicate findings to domain experts who can interpret the data set but do not understand the algorithms. We propose a method for the interactive visual exploration of the feature-class matrix used to represent data sets for classification purposes. This method combines a novel matrix reordering algorithm revealing patterns of interest with an interactive visualization application. It facilitates the investigation of feature-class matrices and the identification of reasons for failure or success of a classifier on the feature level. We discuss results obtained by applying the method to the Reuters text collection.en_US
dc.publisherThe Eurographics Associationen_US
dc.titleVisual Exploration of Feature-Class Matrices for Classification Problemsen_US
dc.description.seriesinformationEuroVA 2012: International Workshop on Visual Analyticsen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record