Show simple item record

dc.contributor.authorChen, Miltonen_US
dc.contributor.authorStall, Gordonen_US
dc.contributor.authorIgehy, Homanen_US
dc.contributor.authorProudfoot, Kekoaen_US
dc.contributor.authorHanrahan, Paten_US
dc.contributor.editorS. N. Spenceren_US
dc.date.accessioned2014-02-06T15:01:28Z
dc.date.available2014-02-06T15:01:28Z
dc.date.issued1998en_US
dc.identifier.isbn0-89791-097-Xen_US
dc.identifier.issn1727-3471en_US
dc.identifier.urihttp://dx.doi.org/10.2312/EGGH/EGGH98/105-112en_US
dc.description.abstractBucket rendering is a technique in which the framebuffer is subdivided into coherent regions that are rendered independently. The primary benelits of this technique are the decrease in the size of the working set of framebuffer memory required during rendering and the possibility of processing multiple regions in parallel. The drawbacks of this technique are the cost of computing the regions overlapped by each triangle and the redundant work required in processing triangles multiple times when they overlap multiple regions, Tile size is a critical parameter in bucket rendering systems: smaller tile sizes allow smaller memory footprints and better parallel load balancing but exacerbate the problem of redundant computation. In this paper, we use mathematical models, instrumentation, and trace-driven simulation to evaluate the impact of overlap and conclude that the problem of overlap is limited in scope. If triangles are small, the overlap factor itself is also small. If triangles are large, overlap is high but pixel work dominates the rendering time. In pipelined rendering systems, the worst-case impact of overlap occurs when the area of an input triangle is equal to the area for which the pipeline is balanced-that is, the trianglerelated computation time is equal to the pixel-related computation time. Thus, as the current trends of exponentially increasing triangle rate, slowly increasing screen resolution, and increasing per-pixel computation continue to push this balance point toward triangles with smaller area, bucket rendering systems will be able to utilize smaller tiles efficiently.en_US
dc.publisherThe Eurographics Associationen_US
dc.subject1.3.1 [Computer Graphics]en_US
dc.subjectHardware Architecture.en_US
dc.titleSimple Models of the Impact of Overlap in Bucket Renderingen_US
dc.description.seriesinformationSIGGRAPH/Eurographics Workshop on Graphics Hardwareen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record