dc.contributor.author | Kipfer, Peter | en_US |
dc.contributor.author | Segal, Mark | en_US |
dc.contributor.author | Westermann, Rüdiger | en_US |
dc.contributor.editor | Tomas Akenine-Moeller and Michael McCool | en_US |
dc.date.accessioned | 2013-10-28T10:02:18Z | |
dc.date.available | 2013-10-28T10:02:18Z | |
dc.date.issued | 2004 | en_US |
dc.identifier.isbn | 3-905673-15-0 | en_US |
dc.identifier.issn | 1727-3471 | en_US |
dc.identifier.uri | http://dx.doi.org/10.2312/EGGH/EGGH04/115-122 | en_US |
dc.description.abstract | We present a system for real-time animation and rendering of large particle sets using GPU computation and memory objects in OpenGL. Memory objects can be used both as containers for geometry data stored on the graphics card and as render targets, providing an effective means for the manipulation and rendering of particle data on the GPU. To fully take advantage of this mechanism, efficient GPU realizations of algorithms used to perform particle manipulation are essential. Our system implements a versatile particle engine, including inter-particle collisions and visibility sorting. By combining memory objects with fioating-point fragment programs, we have implemented a particle engine that entirely avoids the transfer of particle data at run-time. Our system can be seen as a forerunner of a new class of graphics algorithms, exploiting memory objects or similar concepts on upcoming graphics hardware to avoid bus bandwidth becoming the major performance bottleneck. | en_US |
dc.publisher | The Eurographics Association | en_US |
dc.subject | I.3.7 [Computer Graphics] | en_US |
dc.subject | Three Dimensional Graphics and Realism | en_US |
dc.title | UberFlow: A GPU-Based Particle Engine | en_US |
dc.description.seriesinformation | Graphics Hardware | en_US |