Electrostatic Halftoning
View/ Open
Date
2010Author
Schmaltz, Christian
Gwosdek, Pascal
Bruhn, Andres
Weickert, Joachim
Metadata
Show full item recordAbstract
We introduce a new global approach for image dithering, stippling, screening and sampling. It is inspired by the physical principles of electrostatics. Repelling forces between equally charged particles create a homogeneous distribution in flat areas, while attracting forces from the image brightness values ensure a high approximation quality. Our model is transparent and uses only two intuitive parameters: One steers the granularity of our halftoning approach, and the other its regularity. We evaluate two versions of our algorithm: A discrete version for dithering that ties points to grid positions, as well as a continuous one which does not have this restriction, and can thus be used for stippling or sampling density functions. Our methods create very few visual artefacts, reveal favourable blue-noise behaviour in the frequency domain, and have a lower approximation error under Gaussian convolution than state-of-the-art methods.
BibTeX
@article {10.1111:j.1467-8659.2010.01716.x,
journal = {Computer Graphics Forum},
title = {{Electrostatic Halftoning}},
author = {Schmaltz, Christian and Gwosdek, Pascal and Bruhn, Andres and Weickert, Joachim},
year = {2010},
publisher = {The Eurographics Association and Blackwell Publishing Ltd},
ISSN = {1467-8659},
DOI = {10.1111/j.1467-8659.2010.01716.x}
}
journal = {Computer Graphics Forum},
title = {{Electrostatic Halftoning}},
author = {Schmaltz, Christian and Gwosdek, Pascal and Bruhn, Andres and Weickert, Joachim},
year = {2010},
publisher = {The Eurographics Association and Blackwell Publishing Ltd},
ISSN = {1467-8659},
DOI = {10.1111/j.1467-8659.2010.01716.x}
}