Show simple item record

dc.contributor.authorJosiah Mansonen_US
dc.contributor.authorScott Schaeferen_US
dc.date.accessioned2015-02-23T17:15:30Z
dc.date.available2015-02-23T17:15:30Z
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/10.2312/CGF.v29i5pp1517-1524en_US
dc.identifier.urihttp://hdl.handle.net/10.2312/CGF.v29i5pp1517-1524
dc.description.abstractWe propose a new family of barycentric coordinates that have closed-forms for arbitrary 2D polygons. These coordinates are easy to compute and have linear precision even for open polygons. Not only do these coordinates have linear precision, but we can create coordinates that reproduce polynomials of a set degree m as long as degree m polynomials are specified along the boundary of the polygon. We also show how to extend these coordinates to interpolate derivatives specified on the boundary.en_US
dc.titleMoving Least Squares Coordinatesen_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume29en_US
dc.description.number5en_US
dc.identifier.doi10.1111/j.1467-8659.2010.01760.xen_US
dc.identifier.pages1517-1524en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record