Show simple item record

dc.contributor.authorChazal, Fredericen_US
dc.contributor.authorCohen-Steiner, Daviden_US
dc.contributor.authorGuibas, Leonidas J.en_US
dc.contributor.authorMemoli, Facundoen_US
dc.contributor.authorOudot, Steve Y.en_US
dc.date.accessioned2015-02-23T15:43:29Z
dc.date.available2015-02-23T15:43:29Z
dc.date.issued2009en_US
dc.identifier.issn1467-8659en_US
dc.identifier.urihttp://dx.doi.org/10.1111/j.1467-8659.2009.01516.xen_US
dc.description.abstractWe introduce a family of signatures for finite metric spaces, possibly endowed with real valued functions, based on the persistence diagrams of suitable filtrations built on top of these spaces. We prove the stability of our signatures under Gromov-Hausdorff perturbations of the spaces. We also extend these results to metric spaces equipped with measures. Our signatures are well-suited for the study of unstructured point cloud data, which we illustrate through an application in shape classification.en_US
dc.publisherThe Eurographics Association and Blackwell Publishing Ltden_US
dc.titleGromov-Hausdorff Stable Signatures for Shapes using Persistenceen_US
dc.description.seriesinformationComputer Graphics Forumen_US
dc.description.volume28en_US
dc.description.number5en_US
dc.identifier.doi10.1111/j.1467-8659.2009.01516.xen_US
dc.identifier.pages1393-1403en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record