Data-driven methods for interactive visual content creation and manipulation
View/ Open
Date
2014-03-19Author
Jain, Arjun
Item/paper (currently) not available via TIB Hannover.
Metadata
Show full item recordAbstract
Software tools for creating and manipulating visual content --- be they for images, video or 3D models --- are often difficult to use and involve a lot of manual interaction at several stages of the process. Coupled with long processing and acquisition times, content production is rather costly and poses a potential barrier to many applications. Although cameras now allow anyone to easily capture photos and video, tools for manipulating such media demand both artistic talent and technical expertise. However, at the same time, vast corpuses with existing visual content such as Flickr, YouTube or Google 3D Warehouse are now available and easily accessible. This thesis proposes a data-driven approach to tackle the above mentioned problems encountered in content generation. To this end, statistical models trained on semantic knowledge harvested from existing visual content corpuses are created. Using these models, we then develop tools which are easy to learn and use, even by novice users, but still produce high-quality content. These tools have intuitive interfaces, and enable the user to have precise and flexible control. Specifically, we apply our models to create tools to simplify the tasks of video manipulation, 3D modeling and material assignment to 3D objects.